Govt. V.Y.T. PG Autonomous College, Durg (C.G.)

Assignment Examination, 2025-26

B.Sc. V Semester

ELECTRONICS (DSC)

(Industrial Electronics, Information Theory and Coding)

Part A and B of each question is compulsory. Attempt any one from Part C (Short answer type) and D (Long answer type) of each question.

Maximum Marks: 20

UNIT-V

Q. 1 A सूचना सिद्धांत को परिभाषित कीजिए।
Define information theory.

Q. 1 B चैनल क्षमता को परिभाषित कीजिए ।

Define Channel Capacity.

Q.1 C संक्षिप्त टिप्पणियाँ लिखिए: (i) एन्ट्रॉपी (ii) सूचना दर (6)

Write short notes on: (i) Entropy (ii) Information rate.

अथवा / OR

एक असतत स्रोत प्रत्येक मिलीसेकंड में पाँच प्रतीकों में से एक उत्सर्जित करता है। प्रतीक प्रायिकताएँ क्रमशः 1/2, 1/4, 1/16 और 1/16 हैं। स्रोत की एन्ट्रॉपी और सूचना दर ज्ञात कीजिए।

A discrete source emits one of five symbols once every millisecond. The symbol probabilities are $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{16}$ and $\frac{1}{16}$ respectively. Find the source entropy and information rate.

Q. 1 D उदाहरण की सहायता से शैनन-फ़ानो कोडिंग को समझाइए।

(10)

Explain Shannon-Fano Coding with the help of example.

अथवा / OR

पाँच स्रोत संदेश $m_1 = 0.4$, $m_2 = 0.15$, $m_3 = 0.15$, $m_4 = 0.15$, $m_5 = 0.15$ के रूप में प्रकट होने की संभावना है। (i) शैनन-फ़ानो कोडिंग (ii) हफ़मैन कोडिंग के लिए कोडिंग दक्षता ज्ञात कीजिए।

Five source message are probable to appear as $m_1 = 0.4$, $m_2 = 0.15$, $m_3 = 0.15$, $m_4 = 0.15$, $m_5 = 0.15$. Find coding efficiency for (i) Shannon-Fano Coding (ii) Huffman coding.